
“Ersatz” and “Hybrid” NMR Spectral Estimates Using the Filter Diagonalization Method†

Clark D. Ridge and A. J. Shaka*
Chemistry Department, UniVersity of California, IrVine, California 92617-2025

ReceiVed: September 30, 2008; ReVised Manuscript ReceiVed: December 31, 2008

The filter diagonalization method (FDM) is an efficient and elegant way to make a spectral estimate purely
in terms of Lorentzian peaks. As NMR spectral peaks of liquids conform quite well to this model, the FDM
spectral estimate can be accurate with far fewer time domain points than conventional discrete Fourier transform
(DFT) processing. However, noise is not efficiently characterized by a finite number of Lorentzian peaks, or
by any other analytical form, for that matter. As a result, noise can affect the FDM spectrum in different
ways than it does the DFT spectrum, and the effect depends on the dimensionality of the spectrum.
Regularization to suppress (or control) the influence of noise to give an “ersatz”, or EFDM, spectrum is
shown to sometimes miss weak features, prompting a more conservative implementation of filter diagonal-
ization. The spectra obtained, called “hybrid” or HFDM spectra, are acquired by using regularized FDM to
obtain an “infinite time” spectral estimate and then adding to it the difference between the DFT of the data
and the finite time FDM estimate, over the same time interval. HFDM has a number of advantages compared
to the EFDM spectra, where all features must be Lorentzian. They also show better resolution than DFT
spectra. The HFDM spectrum is a reliable and robust way to try to extract more information from noisy,
truncated data records and is less sensitive to the choice of regularization parameter. In multidimensional
NMR of liquids, HFDM is a conservative way to handle the problems of noise, truncation, and spectral peaks
that depart significantly from the model of a multidimensional Lorentzian peak.

1. Introduction

Fourier transform nuclear magnetic resonance (FT NMR)
spectroscopy has efficiently and reliably delivered subtle mo-
lecular structural, stereochemical, and dynamical information
in solution for decades. Two-dimensional NMR has allowed
more complex spin systems to be analyzed, and multidimen-
sional spectra with three or more frequency coordinates have
expanded the applicability of NMR to larger, more complex
systems.1-3 One striking drawback of multidimensional NMR
compared to one-dimensional (1D) NMR is the time needed to
acquire the data in any dimension beyond the first. Obtaining
data in these “indirect” dimensions requires doing a 1D NMR
experiment for every point in the second dimension, a 2D
experiment for every point in the third dimension, and so forth,
leading to minimum experiment times of several days, or weeks,
and making high-resolution, high-dimensional spectra impracti-
cal. However, in many cases, the number of expected signal
peaks is constant or is only a weakly increasing function of the
number of dimensions. The information content we wish to
extract, measured as the number of n-dimensional peaks, is thus
almost constant. Furthermore, the high-dimensional spectrum
often allows clean separation of all peaks if the line width in
each indirect dimension is narrow enough. However, indirect-
dimension line widths are dominated by the transform-limited
line shape, caused by the short acquisition time from the small
number of time points. As a consequence, the time-frequency
uncertainty principle plays a central role in the quality and clarity
of the multidimensional discrete Fourier transform (DFT)
spectra. Attention has thus focused on ways to gain adequate
information from smaller and smaller data sets and the most

information from any size data set by collecting the data
differently, processing the data differently, or both. These
strategies have included nonuniform sampling (NUS)4 in tandem
with maximum entropy (MaxEnt) processing,5-7 linear predic-
tion (LP),8 projection reconstruction (PR),9,10 and the filter
diagonalization method (FDM).11-16 FDM is the focus of this
article.

FDM is a way to obtain a spectral estimate exclusively in
terms of complex Lorentzian peaks and can deliver this estimate
accurately with much shorter time signals than in the case with
conventional DFT processing, as long as the data are well-
matched by the model and the noise level is not too high.15,16

An additional advantage is that, for a given signal and selection
of the regularization parameter (see below), the spectral estimate
is (i) unique; (ii) obtained without any assumptions or prior
knowledge concerning the number or position of signal peaks;
(iii) the result of a theoretically very large problem that is
systematically broken down into smaller subproblems, each of
which can run in parallel on a suitable digital computer, making
FDM highly computationally efficient; and (iv) obtained in one
step, without iteration or any danger of the problems of local
minima or lack of convergence that plague nonlinear least-
squares problems. That is, although the problem of fitting the
multidimensional FID as a potentially very large number of
complex sinusoids (each of which has an envelope that can
either increase or decrease in time) appears to be a huge
nonlinear least-squares problem, FDM accomplishes the task
by a single linear algebra problem that has a unique solution
and well-tested means to obtain it. In multidimensional spectra,
a fifth point is of the utmost importance, namely, that FDM is
an up-front multidimensional method that takes an n-dimen-
sional time signal directly into a corresponding n-dimensional
frequency spectrum; it is the totality of all of the data taken
together that determines the achievable resolution in all of the
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dimensions. In multidimensional DFT spectra, each time/
frequency dimension is independent; therefore, the time-
frequency uncertainty principle applies to each individually. It
seems that FDM uncovers correlated n-dimensional frequencies
by casting the n-dimensional spectrum as a superposition of
n-dimensional peaks, and nothing else.16-20

One limitation of FDM is that noise is not necessarily well-
characterized by a collection of Lorentzian peaks or any other
analytical form. In particular, n-dimensional noise distributed
throughout an n-dimensional frequency space cannot be repre-
sented economically by a relatively small number of n-
dimensional Lorentzian peaks. By contrast, noise responds to
the DFT in a predictable manner, independent of the dimen-
sionality of the spectrum, because the DFT is always a one-
dimensional calculation in reality. The DFT of time domain
noise simply shows up as frequency domain noise in the DFT
spectrum. The FDM spectral estimate can have varying re-
sponses to noise, depending on the noise power and the length
of the signal. One way of dealing with the noise in FDM is to
use regularization to suppress the noise at the possible expense
of some of the potential resolution enhancement. This regular-
ization is especially necessary in the case of multidimensional
signals.19 Regularization broadens all peaks in the spectrum
somewhat but broadens smaller peaks more. If the noise might
be represented by a host of small Lorentzian peaks, regulariza-
tion leads to a much smoother frequency profile, producing a
spectrum with an artificial appearance. Frequency domain noise
is thus not represented authentically in the regularized FDM
spectral estimate. We called this synthetic, artificial spectral
estimate the ersatz FDM or EFDM spectrum. Except for 1D
time signals, where FDM with no regularization can be used,
EFDM has been the only reasonable choice. However, the
artificial noise suppression is a problem especially in two or
more dimensions, where an estimated noise level is used to
determine contour levels and hence what can reasonably be
interpreted as a signal. As there is nothing but n-dimensional
Lorentzian peaks in the FDM spectrum, it is alarmingly easy
to misinterpret a noise spike as a signal. Regularization can also
suppress genuine small signal peaks along with the noise, and
loss of information is just what we wish to avoid. As will
become clear, however, some kind of regularization appears to
be essential to obtain an optimum FDM estimate, and therefore,
a way to establish the true noise level is important. It is also
important to reintroduce weak signal peaks that may have been
regularized away.

We propose here the use of the DFT itself to reintroduce the
noise, and any other missed features in the EFDM spectrum, to
obtain a hybrid FDM spectrum that we denote by HFDM.
Roughly speaking, we try to use FDM to represent the peaks
and the DFT to represent the noise. This is done by constructing
a finite-time EFDM spectrum from the parameters and subtract-
ing it from the DFT of the measured data to give a residual
spectrum. The residual contains noise, weak peaks that may
have been missed, and so forth, and adding the residual to the
infinite-time EFDM spectrum gives the HFDM spectrum;
truncation effects have been mitigated, resolution is superior
on stronger features, but all non-Lorentzian features, and the
true noise, are also present. Any potential false positive feature
in the infinite-time EFDM spectrum is effectively removed in
the HFDM spectrum as long as it is not so narrow that it is
transform-limited in the finite-time EFDM spectrum. This means
that the broad, smooth description of the noise in EFDM will
be subtracted out and replaced with the DFT noise in the final
HFDM spectrum. Very narrow artifact peaks would appear in

HFDM as a sharp spike superimposed on a transform-limited
peak with opposite sign. With appropriate regularization, this
does not seem to occur much.

However, it points out that the residual itself is a useful
diagnostic as well. When the fit is excellent, the residual contains
only noise. As the convergence of FDM depends on the local
density of peaks, the quality of the fit may vary from region to
region, and the residual monitors this quality. HFDM is not a
new idea, having been mentioned previously,15 but it has not
been as actively explored as the more aggressive EFDM
formulation, and it was introduced before the regularization
method that we describe here, when it was not as crucial. The
hybrid method has not been implemented in multidimensional
spectra at all. Now that filter diagonalization is more mature, it
is important to emphasize the most conservative and reliable
implementation. In our opinion, HFDM is the choice of interest
for most actual multidimensional NMR spectra.

2. Theory Section

2.1. FDM of a 1D Signal. We begin by briefly reviewing
one-dimensional FDM. More complete mathematical treatments
can be found elsewhere.13,17,20 Suppose that a discrete, uniformly
sampled, complex-valued, N-point time signal cn (with N as an
even number) consists of a sum of decaying sinusoidal terms

cn )C(nτ))∑
k)1

M

dk exp(i{2πfk + iλk}nτ)

)∑
k)1

M

dk exp(iω̃knτ) n) 0, ... , N- 1 (1)

In the practical case, the pulsed NMR FID Mx(nτ) + iMy(nτ)
would, neglecting noise, be approximated by eq 1, but for the
time being, we assume that eq 1 is exact. The complex
amplitudes dk give the peak integral and relative phase, and the
complex frequencies ω̃k give the frequency position and line
width over a full Nyquist spectral width SW ) τ-1. Here, fk ∈
[-SW/2,SW/2) and λk > 0. In this case, the spectrum consists
exclusively of Lorentzian peaks. The complex frequencies and
amplitudes from the eq 1 can be used to compute the infinite
DFT analytically. Let uk ) exp(iω̃kτ), z ) exp(2πifτ), and S(f)
be the infinite DFT spectral estimate at some frequency f. Then,
S(f) can be computed from the parameters dk and uk by summing
a geometric series
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where the first-point correction is necessary to match the infinite
DFT to the integral continuous transform, to which it should
converge in the limit τ f 0. Clearly, a very fine grid can be
used for the values of f, and the peaks will show no evidence
of “sinc-wiggles” that are well-known artifacts in DFT spectra
of truncated signals even if N is not large enough that the time
Nτ allows the signal to decay into the noise. Note also that eq
2 correctly takes the aliasing of the peaks by the nonzero dwell
time τ correctly into account. Particularly for peaks that may
be out of phase, and/or wide, it is essential to use eq 2 rather
than the continuous integral formulation for the Lorentzian line
shape that is often quoted in elementary texts and in some early
treatments of FDM.12,15,16
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The finite DFT for any length signal can be obtained in the
same way, that is
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It is the second term in the numerator gives rise to the
characteristic “sinc-wiggles” that appear whenever the time
domain acquisition is not long enough. For decreasing expo-
nentials, this second term becomes small once N is large enough.
For increasing exponentials, however, this term can be disas-
trous. Equations 2 and 3 are used to form the infinite-time and
finite-time EFDM spectra.

The next question is how to extract the parameters dk and uk

from the measured data. In the conventional DFT spectrum,
with no zero filling, there are N equally spaced points on a fixed
frequency grid. In FDM, the number of peaks comprising the
fit is M ) N/2, that is, half of the number of data points in the
FID. There are only half as many peaks because each peak
requires two complex numbers to specify it, whereas one
complex number specifies each of the N Fourier amplitudes.
The FDM amplitudes and frequencies are obtained by an
eigenvalue problem, the input matrix elements of which depend
only on the discrete measured data points cn. We assume that
some “initial state” Φ0 evolves in time and that its autocorre-
lation function generates the signal

cn ) 〈Φ0|Û
nΦ0〉 (4)

In Neuhauser’s early work,11,12 an actual autocorrelation function
was the subject under study. Both Û and its underlying
Hamiltonian Ĥ are complex symmetric, allowing the energy
states to have finite lifetimes. Here, the assumption of eq 4 is
simply a convenient way to organize the problem and does not
impact the scope of applicability of FDM in any way. The
complex symmetric inner product, 〈Φ|Ψ〉 ) 〈Ψ|Φ〉 allows the
initial phase of the signal to be arbitrary. (It also, however, hints
at potential numerical problems as the “complex length” allows
〈Φ|Φ〉 ) 0 even for nonzero states.) Diagonalizing Û and
normalizing its eigenvectors is then a straightforward way to
identify dk and uk. If we write Û in its spectral representation in
terms of eigenvalues and normalized eigenvectors

Û)∑
k

M

|Υk〉uk〈Υk| and 〈Υk|Υj〉 ) δkj (5)

then these same will exactly fit the observed time signal cn by
insertion into eq 4
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Note, however, that Û is not known explicitly. We have only
the signal points cn as some indirect evidence of the structure

of Û. Likewise, Φ0 is not known explicitly. To diagonalize Û
numerically, a matrix representation must be obtained. This can
be done by iteratively building up a basis {Φn} by translating
the initial state Φ0 in discrete time steps under the action of Û
to give other (nonorthogonal, unnormalized) states that can be
used to make up a basis

Φk+1 ) ÛΦk (7)

Simple representations of the unit matrix, 1 or U(0) and Û or
U(1) are obtained from the measured data using this basis13

Umn
(0) ) 〈Φm|Φn〉)〈ÛmΦ0|Û

nΦ0〉)〈Φ0|Û
n+mΦ0〉 ) cn+m

(8)
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...
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] (9)

Umn
(1) ) 〈Φm|ÛΦn〉 ) 〈ÛmΦ0|Û
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n+m+1Φ0〉 )

cn+m+1 (10)

U(1) ) [c1 c2 c3 ... cM

c2 c3

c3

...
cM c2M-1

] (11)

The eigenvalue problem

Û|Υk〉 ) uk1̂|Υk〉 (12)

becomes, in the new basis

U(1)Bk ) ukU
(0)Bk (13)

It is essential to include the matrix representation for the identity
operator on the right-hand side of eq 13 because the basis {Φn}
is not orthonormal. Likewise, the eigenvectors must be normal-
ized with this in mind, that is

Bk
TU(0)Bj ) δkj (14)

which is again somewhat different than the usual equations in
quantum mechanics as the complex conjugate of the row
eigenvector is not taken and U(0) is explicitly included. Assuming
eqs 13 and 14 can be solved, the FDM spectral estimate is then
computed by eqs 2 and 6 as we show by explicit formulas below.
Matrix diagonalization is well-understood and has been opti-
mized extensively, making FDM efficient compared to any
attempt to directly fit the FID as damped sinusoids using, for
example, a nonlinear least-squares routine.21 Nevertheless, for
large experimental data sets, the U matrices are dense, huge,
and can be ill-conditioned. These problems are partially
overcome by making linear combinations of the M time-like
basis functions Φk to form frequency-like basis functions Ψ(fk)
at M equidistant frequency grid points across the spectral width,
fk ) SW[k/M s (1/2)], k ) 0,..., M s 1

Ψ(fk)) ∑
n)0

M-1

exp(-2πifknτ)Φn ) ∑
n)0

M-1

exp(-2πifknτ)ÛnΦ0

(15)

When we evaluate matrix elements of the U operators between
basis functions Ψ(fk) and Ψ(fj) at widely different frequencies,
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the values are small compared to those near the diagonalsmuch
smaller than the corresponding value between the Φ basis
functions. The Fourier basis thus simplifies the structure of the
matrices, making them easier to diagonalize. Small off-diagonal
matrix elements, which often refer mostly to noise in any event,
can safely be neglected according to time-independent perturba-
tion theory if there is a large frequency difference between the
states involved. It is this insight that allows the enormous matrix
problem to yield to a divide-and-conquer strategy, in which
smaller submatrices near the diagonal are solved in parallel.
Physically, peaks far away from the current frequency region
of interest should have very little effect on the features under
study because we are tacitly assuming that the spectrum consists
of “peaks” rather than delocalized features. The spectral estimate
is calculated over each window by eq 2 or a number of other
similar formulas16,17 and then summed. In our current imple-
mentation of multiwindow FDM, we overlap adjacent windows
by a generous 50% and use a cos2 weighting function to stitch
the spectral estimates together into a full spectrum,22 but this
particular implementation is somewhat arbitrary. The idea is
that the central region of the window is more accurate than the
edges and therefore should be weighted accordingly. The spectra
obtained are usually surprisingly insensitive to the details of
the window size within broad limits. On the other hand, some
peaks may be computed multiple times times, and with a
different basis in each window, the results will also differ
somewhat. This makes it very difficult to arrive at a line list,
which is a list of each signal peak once and only once, and
with the highest possible accuracy, while listing no peaks
referring to noise. Thus, even though FDM is a parametric
method, the output is treated not as a physical parametric
description of true peaks but as a mathematical description from
which the infinite DFT spectrum can be estimated.

Chopping the Fourier basis into windows provides a spectral
filter that selects a certain particular spectral region for analysis

(diagonalization). This rectangular Fourier filter, proposed by
Mandelshtam and Taylor13 as a refinement of Neuhauser’s
formulation, gives a matrix with elements that are easily
computed from the signal cn and that allows for smaller blocks
of the entire matrix to be diagonalized independently. Matrix
diagonalization requires numerical effort that scales as the cube
of the matrix dimension; therefore, this filter diagonalization
method offers a large improvement in computational time in
addition to making literally any size data set susceptible to
analysis. As long as the frequency width of a window is not
much narrower than the true instrumental line width of a typical
peak, the analysis seems to work extremely well.

Nevertheless, even in the Fourier window basis, the U
matrices can still be quite ill-conditioned. For example, there
could happen to be many more basis functions than true signal
peaks or vice-versa, and the situation may vary markedly from
window to window. When the matrix system is overdetermined,
both U(0) and U(1) may become nearly singular and may in fact
be exactly singular barring small amounts of noise. This is more
of a problem in multidimensional FDM than in one dimension.
Furthermore, noise is stationary in time, and therefore cannot
possibly be properly characterized by a linear combination of
only decreasing exponentials. On average, there ought to be an
increasing exponential for each decreasing one. These terms
have small amplitudes dk and do not necessarily become large
over the time interval for which data exist but will rapidly “blow
up” if the time signal is extrapolated. Figure 1 shows this
situation in a simplified way. Interestingly, while the finite DFT
with a large number of points can generate a large artifact signal
whenever positive exponential functions are included, the infinite
DFT of eq 2 results in nothing worse than a sign change of the
“peak” representing the noise. Of course, eq 2 was derived
assuming that the geometric series converges, which it does not
if |uk| > 1. This abrupt change in the apparent sign of a peak is
shown in Figure 1.

Figure 1. The behavior of a single peak with unit integral, sampled over a 100 Hz spectral width, using the analytic infinite DFT of eq 2. The real
(absorption) part is shown in darkened cyan, and the imaginary (dispersion) part is shown in darkened magenta. The center of the line is at 12.5
Hz. Note that the spectrum is periodic, and the dispersion mode signal must cross through 0 as it wraps around the edges of the spectrum. (a) The
eigenvalue is less than unity, |u| ) 0.90. (b) The eigenvalue is slightly less than unity, |u| ) 0.95. (c) The eigenvalue is slightly larger than unity,
|u| ) 1.05. (d) The eigenvalue is larger than unity, |u| ) 1.10. While the infinite time domain signal for any eigenvalue larger than unity will
diverge, the formula of eq 2 remains quite well behaved. The only pathology is that the absorption mode part changes sign.
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2.2. Noise in FDM. The DFT can fit any time domain signal
with N points sampled on a uniform time grid nτ as exactly N
(nondecaying) complex sinusoids, whether the data are noise
or signal. This fit is not necessarily a good spectral estimate,
though, when Nτ is smaller than a representative T2. It might
seem like FDM, with the flexibility to allow the frequencies to
vary and the exponentials to increase or decrease, could fit the
same space of functions. However, only N/2 such functions are
allowed. It seems that in most cases of signals with N points,
FDM can get an accurate fit with N/2 exponentials. This is
shown in Figure 2. A random sequence of 64 complex numbers
is fit nearly perfectly by the 32 parameters {dk, uk} obtained
from the generalized eigenvalue problem. However, the infinite
DFT formula, eq 2, turns some of the noise peaks upside down
in the spectral estimate. The finite DFT formula, eq 3, matches
the finite DFT of the data but, of course, would offer no
resolution enhancement for truncated signals, either. As the
FDM spectral estimate may slightly mischaracterize even one-
dimensional noisy data, an alternative approach is to try to avoid
dealing with the noise at all, that is, trying to use FDM to fit
the signals alone and then using the DFT to fit the noise.
Regularization is one, albeit imperfect, way to achieve this goal.

2.3. Regularization. The primary method of addressing both
the noise and the potential ill conditioning, even though these
are quite separate issues, is by the use of regularization.
Regularization is well-known in the context of linear least-
squares problems. One has an overdetermined linear system

Ax) y (16)

for measured (or desired) values of the vector y and wishes to
determine x to solve eq 16 in the least-squares sense. When
the number of equations and unknowns is identical, eq 16 can
be solved by computing A-1. When the number of equations
exceeds the number of unknown parameters, a singular value
decomposition (SVD) of the rectangular array A can be used.23

An alternative is to multiply both sides of eq 16 by A†. This
squares the condition number of A and is generally not good
numerical practice. However, as A†A is Hermitian and has real

non-negative eigenvalues, by adding a small positive diagonal
matrix (here denoted by q2 as a reminder that is should be strictly
positive), the left-hand side is assured to be nonsingular. The
solution is then

x) (A†A+ q2)-1A†y (17)

and the regularization parameter q2 is used to control how large
|x| is allowed to become. This well-known method goes by the
names of Tikhonov regularization24 and the moniker ridge
regression in the statistics literature25 and is commonly employed
to solve ill-posed problems. With respect to the generalized
eigenvalue problem, eq 13, there was apparently no similar
method. Proceeding by analogy, however, we rewrote the
regularized problem in the form19

U(0)†U(1)Bk ) uk(U
(0)†U(0) + q2)Bk (18)

The effect of the regularization parameter q2 is less obvious
here. For example, we must be sure that the NMR peaks are
not grossly shifted in position by including q2. The general case
of overlapping truncated peaks and noise is very complicated
and probably defies any comprehensive analysis. Nevertheless,
the effect of q2 can be worked out completely for the simplest
case of one sinusoid sampled at just two time points, t ) 0 and
τ.19 There is no need to transform to the Fourier basis here, and
in this case, we can write

c0 ) d0 c1 ) d0u0 (19)

and the generalized eigenvalue problem boils down to a 1 × 1
problem

c1b) uc0bw u)
c1

c0
(20)

as long as c0 is nonzero. Provided |c1| < |c0|, a decreasing
exponential decay is predicted, and when there is no noise, u
) u0, as expected. However, if both ci are small and noise is
present, the uncertainty in u becomes large. Using eq 18 by
contrast gives the eigenvalue

u)
c0

*c1

|c0|
2 + q2

) u0

|d0|
2

|d0|
2 + q2

(21)

The second factor is real, positive, and less than unity. The
frequency of the line remains unchanged, but the width
increases; the line is smoothed to an extent that depends on its
amplitude (d0 is the integral of the peak not its peak intensity
on resonance). If there are small features referring to noise,
choosing regularization roughly similar to these amplitudes will
result in a very substantial broadening of them, giving the
appearance of noise suppression. Major features with amplitudes
|dk|2 substantially larger than q2 will be relatively unaffected.
Regularization is thus quite different from simply applying a
decreasing exponential weighting function to the FID before
applying FDM as this would increase the widths of all peaks
by the same amount and would not change the conditioning of
U(0) either.

There is a connection between the regularization used in FDM
and that employed earlier in MaxEnt reconstruction. In MaxEnt,
the idea is to find a frequency domain spectrum that is a good
fit to the time domain data but not too good of a fit. That is, the
fit should not be so tight that spectral features that are fitting
the noise turn up. In a seminal analysis, Donoho et al.26

rigorously showed that, in the specific case of a J-point
frequency reconstruction from a J-point FID, the regularization
employed in MaxEnt results in a logarithmic weighting at each

Figure 2. Demonstration of the capability to fit an arbitrary FID by
the FDM parameters. In each case only the real part of the data is
displayed, although all conclusions hold for both real and imaginary
parts. (a) A complex 64-point FID consisting only of random noise.
(b) FID resulting from the FDM parameters obtained by analyzing the
data in (a) in terms of 32 complex exponentials. The fit is essentially
perfect. (c) DFT spectrum of the data in (a), zero-filled to achieve a
smoother interpolated appearance. (d) Finite-time analytical DFT
obtained from the FDM parameters, eq 3, over the same frequency
grid points as in (c). Again, the match is essentially perfect. (e) Infinite-
time DFT of (a) obtained from the FDM parameters (eq 2).
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of the J frequency domain points, so that smaller points are
flattened away while larger ordinates are attenuated less. In
regularized FDM, it is more of a peak-by-peak weighting,
achieved by a nonlinear broadening that seems to occur. A peak-
by-peak weighting is somewhat more attractive because noise
riding on top of peaks is not emphasized more than noise in
the baseline.27 However, it is quite obvious that neither
regularized method can improve the true sensitivity of NMR
spectroscopy as weak peaks are invariably discarded along with
the noise and lost. Once a “peak” has been recognized above
the noise, there is no real sensitivity issue whatsoever be-
cause the sensitivity is high enough to recognize the peak! It is
when a signal is masked by noise that a method to retrieve it
would be invaluable.

2.4. Multidimensional FDM. In two or more dimensions,
several new problems arise. By analogy to eq 4, a two-
dimensional time signal could be written

C(n1τ1, n2τ2)) cn1n2
) 〈Φ00|Û1

n1Û2
n2Φ00〉 (22)

with two commuting operators Û1 and Û2. In fact, the spin
Hamiltonians driving the evolution definitely need not commute.
However, eq 22 is equivalent to the assumption that the 2D
NMR spectrum consists solely of 2D complex Lorentzian peaks.
If Û1, Û2 can be diagonalized simultaneously and have
simultaneous eigenvectors, then

C(n1τ1, n2τ2)) 〈Φ00|Û1
n1Û2

n2Φ00〉

) (Φ00{∑
k

|Yk〉uk1
n1uk2

n2〈Yk|}Φ00)

)∑
k

dkuk1
n1uk2

n2 (23)

and the infinite time two-dimensional DFT is then

S(f1, f2) )∑
k

dk(A1(f1)+ iD1(f1))(A2(f2)+ iD2(f2))

)∑
k

dk(A1(f1)A2(f2)-D1(f1)D2(f2)+

i(A1(f1)D2(f2)+A2(f2)D1(f1)))
(24)

where A and D are the absorption- and dispersion-mode
Lorentzian line shapes and the term “phase-twist” was coined
to describe the appearance of a 2D complex Lorentzian because
of the way in which the apparent phase of a peak would change
along adjacent traces. Note that neither the real nor the imaginary
line shape is the desired double absorption line shape, A1A2.
For this reason, most 2D NMR experiments are done in pairs,
in which the modulation in F1 can either be sin(2πif1t1) and
cos(2πif1t1) or exp(2πif1t1) and exp(-2πif1t1), with the choice
depending on the details of the pulse sequence. The first case
is known as amplitude modulation and the second as phase
modulation, with the two phase-modulated data sets being
referred to as N-type (negative apparent frequency) or P-type
(positive apparent frequency). Amplitude modulation is more
common. A 2D complex Lorentzian phase-twist peak is well-
known to have worse intrinsic resolution than the desired double-
absorption line shape; therefore, sin/cos NMR data sets are
always combined into a single absorption-mode spectrum during
the 2D DFT.28 However phase-modulated N- and P-type signals
are the natural choice for FDM. An amplitude-modulated signal
formally contains twice as many peaks as its phase-modulated
counterpart, making it more likely that the number of signal
peaks is larger than the basis. There are at least two possibilities:

(i) combine the sine and cosine data sets into linear combina-
tions, cos ( i sin, process each phase-modulated set separately,
construct the two complex phase-twist spectral estimates, and
then combine the two to obtain the absorption-mode spectrum;
or (ii) simply replace the real part of the phase-twist line shape,
A1(f1)A2(f2) s D1(f1)D2(f2), by the double absorption line shape
A1(f1)A2(f2) when forming the spectrum from the eigenvalues
and eigenvectors. The second possibility is the one that has been
used most often for actual spectra, also using Re{dk} as the
amplitude. This presupposes that the data are correctly phased
because only a single (real) spectrum is obtained.29,30 It also
may fail to give the best estimate when overlapping peaks are
fit with amplitudes that have a large imaginary part. However,
an advantage is that only one data set is required to obtain the
spectrum. With certain popular NMR experiments employing
pulsed field gradients, such as the sensitivity-enhanced HSQC
experiment31 for 15N-1H chemical shift correlation, it is possible
to obtain a phase-modulated N-type data set without combining
different transients. In this case, twice as many basis functions
can be obtained if the aggressive procedure above is used.

Even if the two hypothesized evolution operators did com-
mute, their matrix representations in a narrow-band window
basis in both F1 and F2 would not. Moreover, when noise is
included, the two matrices will not commute. This difficulty
means that it is not necessarily possible to diagonalize both
matrices simultaneously, obtaining a single set of eigenvectors
and a pair of eigenvalues for each eigenvector. A method to try
to approximately diagonalize the pair of matrices was proposed
early on32 but not followed up. Part of the difficulty is that there
may not be a unique solution for “approximate diagonalization”,
causing possible shifts in peak positions. A more straightforward
choice is to diagonalize each matrix separately and then write
a formal expression for the 2D spectral estimate in terms of the
eigenvalues and eigenvectors in each dimension,32 which, using
an obvious generalization of the notation of eq 2, is

S(f1, f2)) τ1τ2∑
k2

M

∑
k1

M

〈Φ00|Υ1k1
〉〈 Y1k1

|Υ2k2
〉〈 Y2k2

|Φ00〉

( 1
1- uk1

⁄ z1
- 1

2)( 1
1- uk2

⁄ z2
- 1

2) (25)

Rather than the M 2D peaks that should arise from the initial
M 2D basis functions, eq 25 can generate up to M2 peaks in a
direct product pattern; in the nD case, Mn peaks may appear. If
the eigenvectors are simultaneous, the cross term 〈Y1k1

|Υ2k2
〉

vanishes when k1 * k2, and many of these amplitudes are in
fact numerically very small. Nevertheless, sensitivity to noise
is amplified by the cross terms as noise affects the eigenvectors
enough that spurious 2D peaks, larger than the noise floor of
the 2D DFT spectrum, can arise. Regularization plays the dual
role here of making the eigenvectors better behaved, so that
many of the potential peaks disappear, and broadening the
widths in both dimensions, so that the noise peaks are smoothed
away and become less obtrusive. One danger again is that small
genuine 2D peaks may be missed in the regularized spectrum.
Another problem is that most NMR spectroscopists examine
2D contour plots to try to distinguish signal from noise;
therefore, the unfortunate characterization of the noise as 2D
Lorentzian peaks is also potentially misleading as the contoured
feature can look very much like a signal. While regularization
seems to be absolutely required, the very low apparent noise
floor in the EFDM spectrum makes it tempting to push contour
levels ever lower, making it quite possible to obtain a false
positive.
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3. Results and Discussion

To quantify the effect of regularization on signals, noise, and
artifacts in FDM spectral estimates, we examined a large number
of cases by computer simulation and some data from a 2D NMR
experiment. The results shown are representative of the kind
of behavior to expect and are best displayed as spectra. A
comprehensive analysis of the accuracy and reproducibility of
peak positions and amplitudes will be pursued once the results
of these Monte Carlo simulations are completed.

Figure 3 shows a simple example of the effect of a small
amount of noise on a truncated model signal. There are two
intense wider peaks forming a doublet and a weaker sharp
singlet. The top trace is the FDM output from eqs 2, 5, 12, and
13 from a noiseless 16 point FID corresponding to just three
purely Lorentzian peaks, which are obtained quantitatively. In
the second trace, 5% time domain noise has been added, causing
the weak narrow singlet to change sign as the imaginary park
of its eigenvalue changes sign. The widths/phases of the two
stronger doublets are also affected. The other five peaks, fitting
the remainder of the noise, are so weak that they are hard to
discern. In the third trace, the regularized EFDM spectrum is
shown using eq 17 rather than eq 12. As expected, the weaker
peak has selectively broadened and now has the correct phase,
and the noise peaks are eliminated. It also appears that the phase
and width of the doublet peaks has improved, although it is not
immediately obvious why they should do so.

Figure 4 demonstrates the successive effect of regulariza-
tion on a data set again consisting only of noise. The extent

of regularization is best assessed by comparing it to the mean
value of U(0)†U(0) along the diagonal. The larger the regu-
larization, the more severe the broadening of the peaks
representing the noise will be. It is not necessary in 1D FDM
to broaden the noise this much. As Figure 5 shows, the
regularization has the effect of shifting the eigenvalues so
that they all lie within the unit circle in the complex plane.
Eventually, it appears as if the noise is reduced. In actual
fact, all small signals are reduced. The safest choice of
regularization in 1D EFDM is that which just barely causes
all of the eigenvalues to lie within the unit circle, and that
value will depend on the noise level.

Figure 6shows the sequence of events that leads to the most
conservative spectral estimate that FDM can offer, the HFDM
spectrum. The first trace is the model data, and the next two
are the DFT and nonregularized FDM results, both with added
noise. FDM resolves the stronger doublet but does not do as
well with the denser, weaker quartet. The next two traces
show two EFDM spectra, with adequate regularization, using
both the infinite DFT formula of eq 2 and the finite DFT
formula of eq 3 over just the measured time interval. Due to
regularization, weak peaks and/or noise will be attenuated.
The finite DFT estimate should, if the fit is perfect, match
the actual DFT of the data. However, the fit is not perfect
because of the regularization. Taking the difference of
conventional DFT and the finite DFT EFDM spectrum leaves
all of the noise and/or peaks missing from the EFDM
spectrum as a residual signal. If the regularization is correct
and the fit is good, this signal should appear to be nothing
more than noise. In the region of the doublet, the fit is
apparently superior to that in the region of the quartet. Adding

Figure 3. The effect of noise and regularization on a truncated model
1D NMR signal with three Lorentzian peaks. Only the real part of the
spectrum is plotted. A doublet, each peak relative integral 1.0, and a
singlet, relative integral 0.1 but with a width 10 times narrower,
comprise the spectrum. (a) FDM analysis of a 16 point FID yields three
peaks that match the input data exactly and 5 peaks with amplitude
∼0. (b) The addition of 5% time domain noise causes errors in the
eigenvalues and eigenvectors. The narrow singlet changes sign, as
discussed in Figure 1. There is a noticeable error in the phase and width
of the peaks comprising the doublet, as well. (c) Regularizing the
generalized eigenvalue problem with eq 17 leads to a better-behaved
spectral estimate. Regularization affects the width of the weakest peak
more than the two stronger ones and broadens the peaks representing
the noise to such an extent that they become a small DC offset that
looks like a smooth background.

Figure 4. The successive effects of regularization on the way noise is
handled by EFDM. (a) 128 points of noise, cn, with a Gaussian
distribution (the vertical scale is arbitrary). (b) The diagonal elements
of U(0)†U(0) are plotted. They form a type of power spectrum with a
strong weighting function. Their amplitude is not on the same scale as
the noise time signal. (c) The DFT of the noise signal. (d-f) EFDM
spectra of the noise with increasing amounts of regularization. They
are regularized, respectively, with values of 1/50, 1/5, and twice the
average value of the diagonal matrix elements in (b).
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this residual to the infinite DFT EFDM spectrum then gives
the hybrid spectrum, HFDM. As Figure 6 shows, HFDM can
improve the resolution of the NMR spectrum while simul-
taneously retaining weak peaks and correctly characterizing
the noise without either artificial flattening (by the regulariza-
tion) or distracting extra peaks (in the unregularized FDM
estimate).

Figure 7illustrates why regularization is absolutely essential
for multidimensional spectral estimation by FDM. The top
panel is the unregularized FDM spectrum of a 2D HSQC

spectrum of phenanthridinone (shown in the lower panel),
an aromatic molecule that should show eight sets of proton
multiplets with different carbon-13 frequencies. Clearly, the
artifact level generated by the analytical formula of eq 25 is
so high that the spectrum is of little practical value. However,
a modest regularization is sufficient to attenuate these
undesirable peaks. This spectrum was constructed with 2D
absorption-mode Lorentzian peaks, which show a character-
istic star-shaped frequency pattern, so that the only variable
is the extent of the regularization. For most practical
applications, a 2D Gaussian peak, giving clean elliptical
contours, is preferable. It is simple to replace each Lorentzian
with a Gaussian of the same integral and full width at half-
height, as has been described previously.29

The level of regularization can easily be determined by
choosing a “blank” spectral region and solving the generalized
eigenvalue problem along each dimension. As the region
contains only noise, the regularization should be chosen to be
large enough that a flat, fairly featureless spectrum is obtained.
This ensures that FDM is not attempting to fit the noise and
that the direct product artifacts are not present. When there is
a large level of “t1 noise” in the interferometric dimensions, it
may be necessary to increase the level of regularization
somewhat so that these noisy traces are not influencing the fit
much. As long as the HFDM spectrum is used, all of the noise
and over-regularized features will be reintroduced by the DFT
of the residual, although only within the limits of the time
frequency uncertainty principle. By lowering the contour levels,
the last 2D spectrum in Figure 7 demonstrates that even though
noise is broadened by regularization, it is still possible to find
broad peak-like features. In cases where a minor component,
broadened by chemical exchange, may or may not be present,
the appearance of these regularizaed noise peaks can be a
distraction.

In Figure 8, traces from the 2D EFDM, DFT, and HFDM
spectra are shown. The HFDM spectrum recovers some of the
intensity in the weaker peak and masks the weak, broad peaks
in the EFDM spectrum of Figure 7 below a sea of DFT noise.

Figure 5. Spectral estimates and the position of eigenvalues uk from
the FDM calculation of pure noise. (a) The EFDM spectral estimate of
unregularized noise. The noise representation shows a larger peak-to-
peak amplitude than that obtained from DFT of the same data. (b) The
eigenvalues returned from the unregularized generalized eigenvalue
problem used to create (a). Open/filled circles show eigenvalues outside/
inside of the unit circle in the complex plane. Open circles give
increasing exponentials. (c) Regularization by q2 ∼ 1/10 of the average
of the diagonal elements of U(0)†U(0). The noise is artificially smoothed
compared to the appearance in the DFT spectrum. (d) All eigenvalues
now lie inside of the unit circle.

Figure 6. The combination of a regularized EFDM spectrum with the DFT of the residual signal, to give the HFDM spectral estimate. A simulated
64 point FID was used with 7.5% noise in the time domain. There are six signals, one small downfield quartet, with the outside peaks barely above
the noise, and a larger upfield. (a) The model spectrum of a noise-free very long FID shows the quartet and the doublet. (b) The DFT spectrum is
unable to resolve the doublet with the length of data available. (c) The FDM spectrum (no regularization) has some artifacts and distorted peaks
that are introduced by the noise. (d) The EFDM spectrum, showing the noise smoothing by the regularization. The small quartet is smoothed and
attenuated, however, and has an incorrect appearance. (e) The finite-time DFT estimate, eq 3, calculated with the same regularization as that in (d).
(f) The residual signal, (b) - (e), which, if the fit of the signal is perfect, should consist simply of noise. In the region of the quartet, the fit is
imperfect. (g) The HFDM spectrum, formed by adding the residual to the infinite-time EFDM spectrum. This spectrum captures the best of the
resolving power of FDM with the unbiased noise estimate from the DFT. The doublet on the right is clearly resolved, the small quartet is resolved
as well, and the noise level has also been reconstituted.
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At high enough contour levels, the EFDM and HFDM contour
plots are quite similar.

4. Conclusions

The hybrid, or HFDM, spectrum is a conservative approach
to handle noisy, truncated NMR data in a numerically stable
and efficient way. Conceptually, HFDM uses filter diago-
nalization to pick out signal peaks that are both strong enough
to rise above the noise and close enough to the Lorentzian
model to be a decent fit. The noise is then characterized by

the more familiar DFT by adding a residual signal to the
synthetic, relatively noise-free EFDM spectrum. Noise,
although it can certainly be accurately fit in the time domain
for 1D NMR signals, gives an unfamiliar frequency domain
representation in terms of Lorentzian peaks, and in the infinite
DFT estimate, some noise peaks or narrow weak signal peaks
may invert. Particularly in two dimensions (or higher), where
noise has the more pernicious effect of generating a host of
direct product artifact peaks, it is essential to regularize the
generalized eigenvalue problem. This regularization will tend

Figure 7. The dramatic effect of noise on 2D spectral estimation. The 2D 13C-1H HSQC spectrum of phenanthridinone is used as a test case. The
2D spectrum should have eight strong multiplets; no special attempt to resolve the proton-proton couplings was made, although some are resolved.
(a) The 2D FDM spectrum (without regularization) obtained using eq 25. There are many, many artifact peaks for which there is no evidence in
the original data. They arise because of the nonorthogonality of the two sets of eigenvectors used in eq 25. (b) The 2D EFDM spectrum using the
aggressive method. The noise has been reduced, and the artifacts have been attenuated. The eight major groups of peaks for the eight directly
bonded C-H pairs in the molecule show up. The regularization parameter was chosen such that a signal-free region yielded a fairly flat, featureless
spectrum, indicating that the noise would probably not appear in the EFDM spectrum. Minor correlation peaks appear through a combination of
long-range coupling and/or strong coupling in the 13C satellite spectrum. (c) The same spectrum as that in (b) but with lower contours so that the
lack of noise is apparent. Also apparent are the round peak-like features that do not resemble conventional noise, making it difficult to discern a
noise feature from a small signal.

Figure 8. A set of 13C traces from each of the spectra in Figure 7 (at 1H, 194.6 Hz) shows the effects of regularization and the HFDM spectrum.
The scale is the same for all of them, and the top of the sharp peak is not shown but is about the same size in all three. There is a small feature
on the left that is below the level of the artifacts in the first spectrum and is attenuated severely in the second, regularized trace. The third trace
shows the peak restored above the low level of the noise.
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to broaden all peaks, but smaller peaks and noise will be
most affected. Reestablishing the true noise level and
recovering any weak peaks then lead to the HFDM spectral
estimate.

Regularization, if only the ersatz, or EFDM, spectrum will
be used, should be sparingly applied as weak signal peaks may
well be lost. However, by instead using the HFDM spectrum,
the result is somewhat less sensitive to the level of regulariza-
tion. Indeed, if the regularization is very severe, so that even
major peaks are broadened excessively, the HFDM spectrum
simply reverts to the conventional DFT spectrum, making it a
no-lose proposition for the conservative analysis of NMR data.
In 3D and 4D NMR, the same principles apply, and the noise
level is even more important to avoid false positive peaks that
can occur by contouring planes out of the high-dimensional data.
In addition, the residual spectrum provides an important clue
concerning the accuracy of both the Lorentzian model, the FDM
way of obtaining the fit, and the amount of data available.
Further applications of these aspects of HFDM are under active
development and will be described in future publications.
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